Search results for "Hillslope hydrology"

showing 2 items of 2 documents

Analytical solution of kinematic wave time of concentration for overland flow under green-ampt infiltration

2015

In this paper the well-known kinematic wave equation for computing the time of concentration for impervious surfaces has been extended to the case of pervious hillslopes, accounting for infiltration. An analytical solution for the time of concentration for overland flow on a rectangular plane surface is derived using the kinematic wave equation under the Green-Ampt infiltration. The relative time of concentration is defined as the ratio between the time of concentration of an infiltrating plane and the soil sorptivity time scale, depending on the normalized rainfall intensity and a parameter synthesizing the soil and hillslope characteristics. It is shown that for a more complex case (corre…

2300Sorptivity0208 environmental biotechnologyGreen-Ampt infiltration model; Hillslope hydrology; Kinematic wave equations; 2300; Environmental Chemistry; Water Science and Technology; Civil and Structural Engineering02 engineering and technologyMechanicsGreen-Ampt infiltration modelHillslope hydrologyPhysics::Geophysics020801 environmental engineeringKinematic wave equationKinematic waveInfiltration (hydrology)Error analysisImpervious surfaceEnvironmental ChemistrySettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliGeotechnical engineeringSurface runoffTime of concentrationGeologyGeneral Environmental ScienceWater Science and TechnologyCivil and Structural Engineering
researchProduct

Overland Flow Times of Concentration for Hillslopes of Complex Topography

2016

The time of concentration is an important parameter for predicting peak discharge at the basin outlet and for designing urban infrastructure facilities. In studying the hillslope response, employing hydraulic equations of flow, the shape of the hillslope geometry has often been assumed as rectangular and planar. However, natural hillslopes have complex topographies whose shapes are characterized by irregularly spaced contour lines. Recently, kinematic wave time of concentration has been derived for rectangular and curved parallel hillslopes. This paper extends this work to hillslopes of complex planform geometry, considering the degree of divergence or convergence of the hillslope. The exte…

HydrologyComplex topography0208 environmental biotechnologyUrban infrastructure02 engineering and technologyStructural basinAgricultural and Biological Sciences (miscellaneous)020801 environmental engineeringSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliSurface runoffGeomorphologyTime of concentrationGeologyHillslope hydrology Overland flow Convergent and divergent hillslopes Concave and convex profileWater Science and TechnologyCivil and Structural Engineering
researchProduct